XREAP2011-08: Loss risk through fraud in car insurance

Our objective is to analyse fraud as an operational risk for the insurance company. We study the effect of a fraud detection policy on the insurer’s results account, quantifying the loss risk from the perspective of claims auditing. From the point of view of operational risk, the study aims to analyse the effect of failing to detect fraudulent claims after investigation. We have chosen VAR as the risk measure with a non-parametric estimation of the loss risk involved in the detection or non-detection of fraudulent claims. The most relevant conclusion is that auditing claims reduces loss risk in the insurance company.

Ayuso, M. (RFA-IREA); Guillén, M. (RFA-IREA); Bolancé, C. (RFA-IREA)

XREAP2011-08.pdf

XREAP2011-09:The link between public support and private R&D effort: What is the optimal subsidy?

The effectiveness of R&D subsidies can vary substantially depending on their characteristics. Specifically, the amount and intensity of such subsidies are crucial issues in the design of public schemes supporting private R&D. Public agencies determine the intensities of R&D subsidies for firms in line with their eligibility criteria, although assessing the effects of R&D projects accurately is far from straightforward. The main aim of this paper is to examine whether there is an optimal intensity for R&D subsidies through an analysis of their impact on private R&D effort. We examine the decisions of a public agency to grant subsidies taking into account not only the characteristics of the firms but also, as few previous studies have done to date, those of the R&D projects. In determining the optimal subsidy we use both parametric and nonparametric techniques. The results show a non-linear relationship between the percentage of subsidy received and the firms’ R&D effort. These results have implications for technology policy, particularly for the design of R&D subsidies that ensure enhanced effectiveness.

Duch-Brown, N. (IEB); García-Quevedo, J. (IEB); Montolio, D. (IEB)

XREAP2011-09.pdf

XREAP2011-10: Mixture of bivariate Poisson regression models with an application to insurance

In a recent paper Bermúdez [2009] used bivariate Poisson regression models for ratemaking in car insurance, and included zero-inflated models to account for the excess of zeros and the overdispersion in the data set. In the present paper, we revisit this model in order to consider alternatives. We propose a 2-finite mixture of bivariate Poisson regression models to demonstrate that the overdispersion in the data requires more structure if it is to be taken into account, and that a simple zero-inflated bivariate Poisson model does not suffice. At the same time, we show that a finite mixture of bivariate Poisson regression models embraces zero-inflated bivariate Poisson regression models as a special case. Additionally, we describe a model in which the mixing proportions are dependent on covariates when modelling the way in which each individual belongs to a separate cluster. Finally, an EM algorithm is provided in order to ensure the models’ ease-of-fit. These models are applied to the same automobile insurance claims data set as used in Bermúdez [2009] and it is shown that the modelling of the data set can be improved considerably.

Bermúdez, Ll. (RFA-IREA); Karlis, D.

XREAP2011-10.pdf