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Abstract

In a recent paper Bermúdez [2009] used bivariate Poisson regression models for ratemak-
ing in car insurance, and included zero-inflated models to account for the excess of zeros and
the overdispersion in the data set. In the present paper, we revisit this model in order to
consider alternatives. We propose a 2-finite mixture of bivariate Poisson regression models
to demonstrate that the overdispersion in the data requires more structure if it is to be taken
into account, and that a simple zero-inflated bivariate Poisson model does not suffice. At the
same time, we show that a finite mixture of bivariate Poisson regression models embraces
zero-inflated bivariate Poisson regression models as a special case. Additionally, we describe
a model in which the mixing proportions are dependent on covariates when modelling the
way in which each individual belongs to a separate cluster. Finally, an EM algorithm is
provided in order to ensure the models’ ease-of-fit. These models are applied to the same
automobile insurance claims data set as used in Bermúdez [2009] and it is shown that the
modelling of the data set can be improved considerably.

JEL classification: C51; IM classification: IM11; IB classification: IB40.
Keywords: Zero-inflation, Overdispersion, EM algorithm, Automobile insurance, A priori
ratemaking.

1 Introduction

In a recent paper Bermúdez [2009] describes bivariate Poisson (BP) regression models for
ratemaking in car insurance. The central idea is that the dependence between two different
types of claim must be taken into account to achieve better ratemaking. BP regression mod-
els are presented, therefore, as an instrument that can account for the underlying correlation
between two types of claim arising from the same policy (i.e. third-party liability claims and
all other automobile insurance claims). The paper concludes that even when there are small
correlations between the claims, major differences in ratemaking can nevertheless appear. Thus,
using a BP model results in ratemaking that has larger variances and, hence, larger loadings in
premiums than those obtained under the independence assumption.
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Finance and Insurance” Research Group at the University of Barcelona

†Corresponding Author. Departament de Matemàtica Econòmica, Financera i Actuarial, Universi-
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The paper also includes zero-inflated bivariate Poisson (ZIBP) models so as to inflate the
(0,0) cell and to account for the excess of zeros and overdispersion typically observed in this
type of dataset. This produces the best goodness of fit among the bivariate Poisson models
considered.

In conclusion, the independence assumption should be rejected when using either BP or
ZIBP regression models, but one question still remains unresolved: do ZIBP models constitute
the best option for dealing with overdispersion? The aim of the present paper is to examine
this question further by considering alternative bivariate models that might account for these
features of the data, i.e. the excess of zeros and overdispersion.

In the univariate case, Lambert [1992] introduced the zero-inflated Poisson regression model.
Since then, there has been a considerable increase in the number of applications of zero-inflated
regression models based on several different distributions. A comprehensive discussion of these
applications can be found in Winkelmann [2008] and a specific application to insurance ratemak-
ing is addressed in Boucher et al. [2007]. Zero inflated negative binomial regression models have
been also described as for example in Wang [2003] and Garay et al. [2011]. See again Winkelmann
[2008] for a description of a variety of such models and Denuit et al. [2007] for an exhaustive
review of the models used in ratemaking systems for automobile insurance.

In the bivariate (or multivariate) case, the literature analysing the excess of zeros and overdis-
persion is less developed. For example, zero-inflation in the bivariate case is examined in Gurmu
and Elder [2008], Karlis and Ntzoufras [2003] and the references therein, while in the multivariate
case it is analysed in Li et al. [1999]. Recently, in the actuarial literature and for ratemaking pur-
poses, Bermúdez [2009] and Bermúdez and Karlis [2011] deal with the bivariate and multivariate
versions of the zero-inflated Poisson regression models, respectively. They tackle overdispersion
via the excess of zeros, i.e. zero-inflated models.

A natural approach for accounting for overdispersion is to consider models with some overdis-
persed marginal distribution, as opposed to bivariate Poisson models. In this paper we consider
an m-finite mixture of bivariate Poisson regressions (m-FMBP) extending the no-covariate cases
presented in Karlis and Meligkotsidou [2007]. This model has a number of interesting features:
first, the zero-inflated model represents a special case; second, it allows for overdispersion; and,
third, it allows for an elegant interpretation based on the typical clustering application of finite
mixture models. To the best of our knowledge, this model is new to the literature, so in what
follows we seek to explain its properties as well as to discuss appropriate estimation approaches.

The rest of of the paper proceeds as follows. The new models are described in the next
section, followed by the development of an EM algorithm for parameter estimation. The models
are then applied to the same data set as in Bermúdez [2009]. Finally, we conclude with some
remarks.

2 The proposed model

2.1 A bivariate Poisson distribution

Consider random variables Xk, k = 1, 2, 3 which follow independent Poisson distributions with
parameters λk ≥ 0, respectively. Then the random variables Y1 = X1 + X3 and Y2 = X2 +
X3 jointly follow a bivariate Poisson distribution, BP (y1, y2;λ1, λ2, λ3), with joint probability
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function given by

PY1,Y2(y1, y2) = P (Y1 = y1, Y2 = y2) = e−(λ1+λ2+λ3) λ
y1
1
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The above bivariate distribution allows for dependence between the two random variables.
Marginally each random variable follows a Poisson distribution with E(Y1) = λ1 + λ3 and
E(Y2) = λ2 + λ3. Moreover, Cov(Y1, Y2) = λ3, and hence λ3, is a measure of dependence
between the two random variables. If λ3 = 0 then the two variables are independent and the
bivariate Poisson distribution reduces to the product of two independent Poisson distributions
(also known as a double Poisson distribution). For a comprehensive treatment of the bivariate
Poisson distribution and its multivariate extensions the reader is referred to Kocherlakota and
Kocherlakota [1992] and Johnson et al. [1997].

For greater flexibility, we can assume a bivariate Poisson regression model where each of the
parameters of the BP is related to some covariates through a log link function, i.e. by assuming

log λki = βT
k xki, k = 1, 2, 3, i = 1, . . . , n

where xki is a vector of covariates for the i-th observation related to the k-th parameter and βk

is the associated vector of regression coefficients. Note that x does not need to be the same for
all the parameters. Likewise note that according to Karlis and Ntzoufras [2003], it is perhaps a
good idea not to use the same covariates in all the parameters since this may lead to problems
in their interpretation. For example, since the marginal mean for Y1 is λ1 + λ3 using the same
covariates in both may create problems of interpretation especially if the signs of the regression
coefficients differ. R package bivpois can be used to fit this model based on an EM algorithm.

In this model, and as the marginal distributions are Poisson, we assume that the marginal
means and variances are equal. Moreover, we assume that the correlation is positive. Therefore,
there we need to consider extensions to allow for overdispersion (variance greater than the mean)
and a possible negative correlation.

2.2 Mixed bivariate Poisson models

A natural way to allow for overdispersion is to consider mixtures of a simpler model. This is
best achieved in the univariate setting by moving from the simple Poisson model to the negative
binomial model. Such an approach while applicable in the bivariate setting, is not so widely
used here, primarily because there is no one way of doing so and, hence, questions of ease and
interpretation acquire greater importance.

Mixtures of BP distribution can be considered in at least two different ways. In the first we
start with a BP (aλ1, aλ2, aλ3) distribution where a follows some distribution. We can assume
λ3 = 0 which makes the calculation much easier and assumes that all the correlation comes
from the common a. If λ3 > 0 then the correlation is twofold, due to λ3 (known as an intrinsic
correlation) and due to the common a. This complicates the interpretation of the parameters.
A natural assumption in this case is that E(a) = 1 so a does not inflate the means. This is a
very typical extension of a simple mixed Poisson regression models. One drawback, however, is
that the model only allows a positive correlation. The literature on this approach includes the
works of Stein et al. [1987], Stein and Yuritz [1987] and Kocherlakota [1988] for the case without
covariates. Munkin and Trivedi [1999] described multivariate mixed Poisson regression models
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based on this type of mixing and a gamma mixing distribution. Gurmu and Elder [2000] used
an extended gamma density as a mixing distribution. This approach also has a random-effect
representation if covariates are used. This assumes that

Y1i, Y2i ∼ BP (λ1i, λ2i, λ3i)

log λki = βT
k xki + ui, k = 1, 2, 3, i = 1, . . . , n

ui ∼ G(u)

where ui is the random effect associated with the i-th observation, common to all the parameters.
In fact this approach is equivalent to a frailty model.

In the second case, we start with a BP (a1λ1, a2λ2, a3λ3) distribution, but now the a’s are
different. We need to assume that they jointly follow a trivariate (or bivariate if we assume that
λ3 = 0 ) distribution. Clearly such a construction is much more complicated and, in practice,
not especially useful. The case when λ3 = 0 has received attention primarily because it can
induce negative correlation between counts. Steyn [1976] proposed the use of a bivariate normal
distribution as the mixing distribution. Some years later, Aitchinson and Ho [1989] proposed
using the bivariate lognormal distribution instead of the simple bivariate normal distribution.
For a Bayesian application of this distribution see Chib and Winkelmann [2001].

To put it in a random effect format the above model is equivalent to assuming

Y1i, Y2i ∼ BP (λ1i, λ2i, λ3i)

log λki = βT
k xki + uki, k = 1, 2, 3, i = 1, . . . , n

u1i, u2i, u3i ∼ G(·)

where now G(·) is a trivariate distribution and, hence, the random effects are different, albeit
related, for each parameter. Again for purposes of identifiability, it must be assumed that the
expectation for each random effect is 1.

In both of the above models the specification of the random-effects distribution G(·) can be
a continuous, a discrete or a finite distribution.

In the paper, we consider the latter case assuming that the joint distribution for the random
effects is a finite distribution, i.e. the case in which only a finite number of points have positive
probabilities. Such an assumption gives rise to finite mixture models, which are very popular in
a range of disciplines. These models, i.e. finite mixtures of multivariate Poisson distributions,
have been described in Karlis and Meligkotsidou [2007].

The novelty of our approach lies in the fact that we assume different regression lines for
each component in the mixture, extending the finite mixture Poisson regression model of Wang
et al. [1998] (see Grun and Leisch [2007] for the implementation of models of this type) in
two dimensions. Thus, in the next section we introduce the finite mixture of bivariate Poisson
regressions.

2.3 The finite mixture of bivariate Poisson regressions

Let the θ = (λ1, λ2, λ3) denote the vector of parameters. We define as an m-finite mixture of
bivariate Poisson distributions the distribution with joint probability function

P (y1, y2) =

m∑
j=1

pjBP (y1, y2;θj)
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where pj > 0, j = 1, . . . ,m are the mixing proportions with
m∑
j=1

pj = 1 and θj are the

component-specific vectors of parameters, namely θj = (λ1j , λ2j , λ3j). In the sequel the first
subscript denotes the parameter and the second the component, while if we require a further
subscript to indicate the observation we will use a third one.

In this mixture model, the marginal expectations are given by

E(Yk) =
m∑
j=1

pj(λkj + λ3j), k = 1, 2,

while its variance covariance matrix of Y = (Y1, Y2)
T is given by

V ar(Y ) = A

 m∑
j=1

pjΣj −

 m∑
j=1

pjθj

 m∑
j=1

pjθj

T
AT ,

where

Σj =

 λ2
1j + λ1j λ1jλ2j λ1jλ3j

λ1jλ2j λ2
2j + λ2j λ2jλ3j

λ1jλ3j λ2jλ3j λ2
3j + λ3j


and

A =

[
1 0 1
0 1 1

]
.

This can be written in the following interesting form

V ar(Y ) = AD(θ)AT ,

where

D(θ) =

 V ar(λ1) + E(λ1) Cov(λ1, λ2) Cov(λ1, λ3)
Cov(λ1, λ2) V ar(λ2) + E(λ2) Cov(λ2, λ3)
Cov(λ1, λ3) Cov(λ2, λ3) V ar(λ3) + E(λ3)


which results in

Cov(Y1, Y2) = Cov(λ1, λ2) + Cov(λ2, λ3) + Cov(λ1, λ3) + V ar(λ3) + E(λ3).

Thus if the λ’s are negatively correlated we can end up with negative correlation.
The above model has some interesting properties. First, as shown in Karlis and Meligkotsidou

[2007], even if λ3 = 0, i.e. within each component the two variables are uncorrelated, the Y ’s
are correlated due to the correlation induced by the finite distribution of the λ’s. Such a model,
with λ3 = 0 for all the components, actually assumed independence within each component, but
again overall we can have correlation.

Second, the correlation between Y1 and Y2 can be negative, while Y1 and Y2 are overdispersed
if m > 1. Note also that the marginal distributions are finite Poisson mixtures.

Finally, as we prove in Appendix A, mixed bivariate Poisson distributions always give equal
or greater probability to the (0,0) cell from the corresponding bivariate Poisson with the same
marginal means. Furthermore, zero-inflated bivariate Poisson models can be considered a special
case of this model, when the first component has λ1 = λ2 = λ3 = 0 and, hence, all the probability
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mass is given in the (0,0) cell. This also suggests why zero-inflated models are overdispersed
and can induce different correlation structures.

In Appendix B, we summarize some of the moments of the finite mixture of bivariate Poisson
distribution. These quantities can be used for actuarial purposes as in Bermúdez [2009] and
Bermúdez and Karlis [2011].

In order to include covariates and thus allow for greater flexibility we assume that each
parameter is associated to a vector of regressors. Namely our model takes the form

Y i = (Y1i, Y2i) ∼
m∑
j=1

pjBP (y1, y2;λ1ji, λ2ji, λ3ji), i = 1, . . . , n, j = 1, . . . ,m,

log(λkji) = βT
kjxkji, k = 1, 2, 3, j = 1, . . . ,m, (1)

where xkji is a vector of covariates for the i-th observation associated with the k-th parameter
of the j-th component of the mixture and βkj is the set of regression coefficients. It is clear that
the covariates can differ for different parameters.

This model extends the finite mixture of Poisson regression model of Wang et al. [1998]. The
model assumes that for each variable we have m distinct Poisson regression models that relate
the variable of interest with different covariates. Hence, we assume that the population has
several distinct clusters presenting different behaviour. The added feature is that now we model
two variables together and so we are able to take into account their relationships and correlation.
Moreover, starting from a bivariate Poisson model, within each group we may assume a different
correlation structure.

A natural extension of the model is to use covariates also in the mixing proportions, i.e.
the vector of probabilities (p1, . . . , pm). A typical choice is to assume a multinomial logistic
model for the vector of mixing proportions (reducing to simple logistic regression if only two
components are present).

In the next section, we provide an EM algorithm to allow for a relatively simple maximum
likelihood (ML) estimation of the model. It is based on the standard EM for finite mixtures but
also takes into account the trivariate reduction derivation of the bivariate Poisson model.

3 ML estimation via an EM algorithm

In this section we develop an EM algorithm. The parameters to be estimated are the mixing
proportions pj , j = 1, . . . ,m − 1, and the component-specific vector of regression coefficients
βkj , k = 1, 2, 3.

Being a finite mixture, standard missing data representation is possible. LetZi = (Z1i, . . . , Zmi)
be a vector with Zji = 1 if the i-th observation belongs to the j-th group and 0 elsewhere. We
also introduce component-specific latent variables, i.e. for the j-th component we use the un-
observable vectors Y j∗

i = (T1ji, T2ji, Sji) such as Y1i = T1ji + Sji and Y2i = T2ji + Sji, as
the trivariate reduction derivation implies. The algorithm is similar to that described in Brijs
et al. [2004], but here we also have regressors. Clearly if Zi and Sji were observables then
estimation would have been a simple task, since at the E-step we need to obtain the conditional
expectations. The algorithm is now given by:

E-step: Given the values of the parameters after the rth iteration we obtain from (1), λ
(τ)
1j ,
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λ
(τ)
2j and λ

(τ)
3j and then we calculate the expected values of the unobservables:

sji = E(Sji | Y1i, Y2i,λ(τ)
1j ,λ

(τ)
2j ,λ

(τ)
3j ) =

 λ
(τ)
3ji

BP (y1i−1,y2i−1|λ(τ)
1ji ,λ

(τ)
2ji ,λ

(τ)
3ji)

BP (y1i,y2i|λ
(τ)
1ji ,λ

(τ)
2ji ,λ

(τ)
3ji)

, if y1iy2i > 0

0 if y1iy2i = 0

and

wji =
pjBP (y1i, y2i | λ1ji, λ2ji, λ3ji)

m∑
j=1

pjBP (y1i, y2i | λ1ji, λ2ji, λ3ji)

.

M-step: Update the estimates by

p
(τ+1)
j =

n∑
i=1

wji/n ,

β
(τ+1)
1j = β̂(y1 − sj ,x1,wj),

β
(τ+1)
2j = β̂(y2 − sj ,x2,wj),

β
(τ+1)
3j = β̂(sj ,x3,wj);

where sj = [sj1, . . . , sjn]
T is the n× 1 vector, β̂(y,x,w) are the weighted maximum likelihood

estimated parameters of a Poisson model with response to the vector y, design or data matrix
given by x and weights w. Note that different covariates may be used for each λ, i.e. different
design matrices.

The above procedure has all the advantages and drawbacks of the EM algorithm. For this
reason, suitable terminating conditions should be considered carefully.

In the case in which covariates are also used for the mixing proportions, then the M-step has
to be replaced by one that fits a multinomial logistic (or a simple logistic if only two components
are considered) regression using wij as response vector.

Finally, initial values can be obtained by fitting a simple univariate Poisson regression to each
variables so as to obtain the fitted values. Then, by simply perturbing them (e.g. multiplying
the lambda expressions by 0.8 and 1.2), we can obtain initial values for each component. Initial
values for the mixing proportions are less important for initialization. Furthermore, as in other
finite mixture settings, initial values can be obtained using a standard clustering algorithm.
Note that obtaining initial estimates for the wji is sufficient to initialise the algorithm.

4 Application

4.1 The data

The original population comprised a ten-percent sample of the 1996 automobile portfolio (note,
only automobiles categorized as being for private use were considered) of a major insurance
company operating in Spain and contains information for 80,994 policyholders. The data have
previously been also used in Bermúdez [2009] where bivariate Poisson models, including zero-
inflated models, were fitted. The sample is not representative of the company’s current portfolio,
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Variable Definition
V1 equals 1 for women and 0 for men
V2 equals 1 when driving in urban area, 0 otherwise
V3 equals 1 when zone is medium risk (Madrid and Catalonia)
V4 equals 1 when zone is high risk (Northern Spain)
V5 equals 1 if the driving license is between 4 and 14 years old
V6 equals 1 if the driving license is 15 or more years old
V7 equals 1 if the client is in the company between 3 and 5 years
V8 equals 1 if the client is in the company for more than 5 years
V9 equals 1 of the insured is 30 years old or younger
V10 equals 1 if includes comprehensive coverage (except fire)
V11 equals 1 if includes comprehensive and collision coverage
V12 equals 1 if horsepower is greater than or equal to 5500cc

Table 1: Explanatory variables used in the models

being drawn from a larger panel of policyholders that had been customers of the company for at
least seven years; however, the sample should be helpful here for illustrative purposes. Twelve
exogenous variables were considered plus the annual number of accidents recorded for both types
of claim. For each policy, the information at the beginning of the period and the total number
of claims from policyholders “at fault” were reported for each year. The exogenous variables,
described in Table 1 outlining the covariates, and this data set have previously been used in
Pinquet et al. [2001], Brouhns et al. [2003], Bolancé et al. [2003], Bolancé et al. [2008], Boucher
et al. [2007], Boucher and Denuit [2008] and in Boucher et al. [2009].

In this study, all customers had held a policy with the company for at least three years.
Thus, variable V7 could be rejected and variable V8 retained, the latter’s baseline now being
established as a customer who had been with the company for fewer than five years.

The meaning of the variables that refer to the policyholders’ coverage should also be clarified.
The classification adopted here responds to the most common types of automobile insurance
policy available on the Spanish market. The simplest policy only includes just third-party
liability (claimed and counted as Y1 type) and a set of basic guarantees such as emergency
roadside assistance, legal assistance or insurance covering medical costs(claimed and counted
as Y2 type), but it does not include comprehensive coverage or collision coverage (claimed and
counted as Y2 type). This simplest type of policy makes up the baseline group, while variable V10
denotes policies which, apart from the guarantees contained in the simplest policies, also include
comprehensive coverage (except fire), and variable V11 denotes policies which also include fire
and collision coverage.

4.2 Results

We fitted a 2-finite mixture of bivariate Poisson regressions to this data set. We have avoided
running a model with three components as the interpretation of such a model would have been
more difficult and because a 2-finite mixture allows sufficient interpretation of this particular data
set. However, models with more components can easily be fitted via the EM algorithm provided.
Further, we estimated both λ3 parameters as being equal to 0, implying that conditional on the
component no correlation was present.

The first model fitted does not have covariates in the mixing proportion p while the second
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Model Log-Lik Parameters AIC

Double Poisson -48,882.95 24 97,813.90
Bivariate Poisson (BP) -48,135.98 25 96,321.96
BP (regressors on λ3) -47,873.37 26 95,798.74
Zero inflated BP (ZIBP) -45,435.00 26 90,922.00
ZIBP (regressors on λ3) -45,414.80 27 90,883.60
2-finite mixture BP (2-FMBP1) -44,927.01 51 89,956.02
2-FMBP2 (regressors on p) -44,842.22 53 89,737.44

Table 2: Information criteria for selecting the best model for the data

uses V10 and V11 as covariates in the mixing proportion. We used these covariates because when
fitting the first model we noticed that there was a large difference in a posteriori probabilities
when considering values 0 or 1 for V10 and V11. We return to this issue later. Bermúdez [2009]
also used V 10 covariate to model λ3 parameter. In the sequel, 2-FMBP1 is the name given to
the first model without covariates on p and 2-FMBP2 is the name given to the second model
with covariates on p. Models were fitted via the EM algorithm provided.

Table 2 presents the results from fitting various models to the data. We fitted models of
increasing complexity, starting from a simple independent Poisson regression model. The first
five models are the same as those fitted in Bermúdez [2009]. It can be seen that the 2-finite
mixture of bivariate Poisson regressions are by far the best models, especially the regression
with covariates in the mixing proportion, which has the best AIC.

Table 3 shows the results from fitting the 2-finite mixture of bivariate Poisson model with
the covariates in the mixing proportion. The p-value refers to the likelihood ratio test (LRT)
statistic when the variable is included or excluded from the model. We prefer this approach as
standard errors in finite mixtures are not easy to derive. In our case we would need to derive
the Hessian of the log-likelihood function which is particularly time consuming and vulnerable
to overflows as we have 53 parameters (12 regression coefficients for each variable for two of the
components, plus three coefficients for the mixing proportion and two covariance parameters).
Bootstrapping as an alternative can also be very slow. So, we removed each variable each time
and calculated a LRT. The p-values reported correspond to this LRT.

Figures 1 and 2 help illustrate that the 2-finite mixture of bivariate Poisson regression (with
covariates on p) is a good option, and better in all circumstances than a zero-inflated bivariate
Poisson regression, for dealing with overdispersion and the excess of zeros present in the data
set.

Figure 1 shows the components fitted. We plotted boxplots for the two components for
the two variables under consideration. The boxplots represent the values of λkji for k = 1, 2,
j = 1, 2, and i = 1, . . . , 80, 994. From this plot, it can be readily seen that the first component
corresponds to policyholders with high rates of claims for both variables, Y1 and Y2, while the
second component corresponds to those with small claim rates. In fact, the second component
has very small means for the underlying Poisson components, which implies a high probability
of zeros. Thus, the second component introduces a large amount of zero inflation in our model.

Bermúdez [2009] fitted zero-inflated bivariate Poisson models to account for the excess of
zeros found with respect to the simple bivariate Poisson model while at the same time, allowing
for overdispersion. Here, we show that the problem is more than one of simple zero inflation.
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1st component 2nd component
(j = 1) (j = 2)

Y1 Y2 Y1 Y2
Coeff. p-value Coeff. p-value Coeff. p-value Coeff. p-value

Intercept 0.071 < 0.001 -1.611 < 0.001 -3.118 < 0.001 -6.014 < 0.001
V1 -0.061 0.115 0.032 0.218 0.127 0.059 0.037 0.258
V2 -0.037 0.162 0.008 0.308 -0.076 0.123 0.179 0.001
V3 -0.090 0.027 0.106 0.003 0.197 0.006 0.242 < 0.001
V4 0.129 0.003 -0.043 0.166 0.284 < 0.001 -0.371 < 0.001
V5 -0.132 0.142 0.153 0.111 -0.346 0.016 0.452 0.003
V6 -0.216 0.052 0.027 0.313 -0.524 0.002 0.137 0.215
V8 0.101 0.022 0.135 0.002 0.190 0.013 0.326 < 0.001
V9 0.078 0.145 0.035 0.262 0.193 0.048 0.171 0.024
V10 -0.707 < 0.001 1.622 < 0.001 -2.676 < 0.001 2.953 < 0.001
V11 -0.361 < 0.001 1.069 < 0.001 -0.285 0.002 2.412 < 0.001
V12 0.036 0.224 0.102 0.028 0.079 0.145 0.397 < 0.001

λ3 0.000 - 0.000 -

Mixing Proportion (p)
Intercept -2.4595 < 0.001
V10 1.447 < 0.001
V11 0.680 < 0.001

Table 3: Results from fitting the 2-FMBP2 model (with regressors on p)
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Thus, by assuming the existence of two types of policyholder described separately by each
component in the mixture, we are able to improve considerably the modelling of the data set.
Indeed zero-inflated models represent special instances of the finite mixture model presented
here, which was considered, at least initially, to account for overdispersion.

In fact, in the univariate case, Lord et al. [2005] and Lord et al. [2007] criticize zero-inflated
models when modelling the number of accidents owing to a dual-state process assumption.
According to them, the claim is made that zero-inflated models assume two sources of zeros:
“true” and “observed”. The existence of “true” zeros may be too strong an assumption in some
cases (see also Boucher and Santolino [2010]). However, as Park and Lord [2009] discuss in
the univariate case, the two-component mixture model used here does not make this somewhat
strict dual-state process assumption and allows mixing with respect to both zeros and positives.
This interpretation is more flexible and it holds better in our case. The group separation is
characterized by low mean with low variance (policyholders considered as a “good” drivers) and
high mean with high variance (policyholders considered as a “bad” drivers).

From Figure 1, it is also interesting to note that third-party liability claims (Y1) present
greater separation between the two components than is shown by the rest of automobile claims
(Y2).

For each observation, we also calculated the underlying variance and covariance. These are
depicted in Figure 2. The horizontal line is the observed quantity and the boxplot refers to
the values fitted for each individual based on the second model (the one with covariates on p).
As for the covariance, we can see that the model captures this quite well. In the case of the
variance, we can see that the model’s prediction is somewhat smaller than that observed. This
is perhaps an indication that some overdispersion remains uncaptured, either because a third
component could be fitted or because we have overlooked some covariates.

Most of the parameters are significant. Note, however, that the sample size was very large.
Any variable selection technique could have been used to reduce the number of variables, however
in this application we preferred to retain all the variables in order to see their effect. Recall that
it is not necessary to use the same covariate vector for all the parameters. Only the parameter
related to gender (V1 ) is not significant in all cases, i.e. for both components and both response
variables. On the other hand, parameters related to the driving zone (V3 ), the number of years
the customer has been with the company (V8 ), and the type of coverage (V10 and V11 ) present
significant coefficients for both components and both response variables. It is interesting to note
that parameters V10 and V11 present coefficients of different signs for each response variable.
For the Y1 variable (third-party liability claims), the more policy guarantees the customers
take out the fewer claims they report. The opposite is the case for the Y2 variable (all other
automobile insurance claims). Finally, parameters V5 and V9, related to the policyholder’s
driving experience and age respectively, are significant only for the second component, while
parameter V12, related to the car’s horsepower, is only significant for the second response
variable.

A more detailed explanation of the coefficients is of interest here to differentiate between the
two groups. Recall that the first component corresponds to the policyholders considered “good”
drivers, characterized by a low mean with low variance, and the second component corresponds
to the policyholders considered “bad” drivers, characterized by a high mean with high variance.
Most of the parameters present the same behaviour for both “good” and “bad” drivers. This
is the case of the parameters related to the driving zone (V3 and V4 ), the type of coverage
(V10 and V11 ), and the car’s horsepower (V12 ). Another example is the longer the customer
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has been with the company (V8 ) the more claims the policyholder reports, regardless of the
group to which he or she belongs. By contrast, three parameters are only significant for the
second component, and as such can be used to define a “bad” driver. These are basically the
parameters related to a driver’s age and driving experience. The fact of being thirty years old or
younger (V9 ) results in the expected number of claims to increase for all types of claim. Driving
experience (V5 ) reduces the expected number of third-party liability claims, but increases the
expected number for all other automobile insurance claims. Moreover, “bad” drivers in urban
areas (V2 ) only present a larger expected number of claims for Y2 type claims. Finally, V10
and V11 are also highly significant for the mixing proportion, implying that the existence of
V10 and V11 increases the probability of belonging to the first cluster. Hence, “good” drivers
take out more guarantees in their policies than is the case with “bad” drivers.

Table 4 presents the observed and expected frequencies under the two 2-finite mixture of
bivariate Poisson regressions. To obtain the expected frequencies, for each observations we
calculated the probability table based on the estimated parameters and then we summed all
these probability tables to obtain the one with the expected frequencies. The fit is quite good,
while there are still a few cells that have large residuals. The results of the chi-square test show
that only a few cells contribute to this goodness of fit, but owing to the very large sample size,
rejecting the null hypothesis is somewhat artefactual. It is our belief that the fit is, in fact, very
good given the size of the data set. Furthermore, note that a zero-inflated model would only
correct with respect to the (0,0) cell and not to the entire probability table.

Finally, we present Figure 3 in an effort to see which variables characterize each cluster and
which variables can be included as regressors in the mixing proportion p. Using the posterior
probabilities, available on finishing the EM algorithm, we can classify each observation to a
cluster, based (as usual) on the maximum posterior probability. Since all the variables were
binary, for each cluster we considered the proportion of observations that belong to the first
cluster for all the variables.

In Figure 3 the profiles of the two clusters are depicted for each model fitted, i.e. the mean
for all the clients assigned to each cluster. The left-hand side plot corresponds to the 2-FMBP
without covariates in the mixing proportion, while the right-hand side plot corresponds to the
model with V10 and V11 as covariates in the mixing proportion. The red dotted line represents
the first cluster while the solid black line represents the second. For the left-hand side plot,
the main differences occur for variables V10 and V11 while some small difference is found
for V3. In simple terms, these variables can be used to distinguish between the two clusters.
Interestingly, these variables also have different signs in their regression coefficients for the two
components (see Table 3). They are also the only variables that are statistically significant for
both components and both response variables. For all the other variables, the profiles are the
same which indicates their unsuitability for characterizing the clusters.

After including V10 and V11 as covariates in the mixing proportion, it can be seen that all
the information regarding V11 is now included within the mixing proportion parameter p. In
other words, the p does not differ for the two components but it is significant when selecting
the component. Thus, if we do not use V11 in the p then the differences will be apparent in the
means. By contrast, the inclusion of the comprehensive coverage (except fire) (V10 ) variable
still characterizes the clusters. Differences exist for the other variables but are smaller.

Note also the differences in interpretation afforded by the two models. By using covariates in
the mixing proportion, we model the effect of the covariate explicitly to the choice of component,
while when using them only in the mean of the component we do so implicitly. It also helpful
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Y1 Y2

0 1 2 3 4 5 6 7

Observed 71087 3722 807 219 51 14 4 0
0 2-FMBP1 70992.70 3932.01 593.23 161.74 49.25 13.93 3.54 0.80

2-FMBP2 71045.30 3806.84 644.29 191.87 54.33 13.26 2.81 0.53

Observed 3022 686 184 71 26 10 3 1
1 2-FMBP1 3032.90 753.38 253.26 87.06 27.60 7.87 2.01 0.46

2-FMBP2 3055.16 737.08 280.54 92.21 25.57 6.10 1.28 0.24

Observed 574 138 55 15 8 4 1 1
2 2-FMBP1 580.86 200.93 71.19 24.73 7.87 2.25 0.58 0.13

2-FMBP2 476.95 217.76 77.63 23.73 6.27 1.45 0.30 0.05

Observed 149 42 21 6 6 1 0 1
3 2-FMBP1 107.79 38.11 13.61 4.75 1.52 0.44 0.11 0.03

2-FMBP2 117.96 49.36 15.41 4.31 1.07 0.24 0.05 0.01

Observed 29 15 3 2 1 1 0 0
4 2-FMBP1 15.41 5.50 1.98 0.69 0.22 0.06 0.02 0

2-FMBP2 24.48 9.06 2.46 0.62 0.14 0.03 0.01 0

Observed 4 1 0 0 0 0 2 0
5 2-FMBP1 1.79 0.65 0.23 0.08 0.03 0.01 0 0

2-FMBP2 4.26 1.42 0.34 0.08 0.02 0 0 0

Observed 2 1 0 1 0 0 0 0
6 2-FMBP1 0.18 0.06 0.02 0.01 0 0 0 0

2-FMBP2 0.64 0.20 0.04 0.01 0 0 0 0

Observed 1 0 0 1 0 0 0 0
7 2-FMBP1 0.02 0.01 0 0 0 0 0 0

2-FMBP2 0.08 0.02 0 0 0 0 0 0

Observed 0 0 1 0 0 0 0 0
8 2-FMBP1 0 0 0 0 0 0 0 0

2-FMBP2 0.01 0 0 0 0 0 0 0

Table 4: Observed and expected frequencies
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Figure 3: The profiles of the two clusters considered for 2-FMBP1 and 2-FMBP2 models

to consider how covariates directly affect the probability of each customer belonging to a group.

5 Concluding Remarks

We have proposed a new model of finite mixture of bivariate Poisson regressions. The idea is that
the data consist of subpopulations of different regression structures. A potential use for such
a model is for examining the clustering of observations, taking into consideration the effect of
certain covariates while also taking into account the dependence between the response variables.
The model corrects for the zero inflation and overdispersion present in the real automobile
insurance data set used in the application. The model can also be used to model negative
correlation.

The AIC reported here indicates that the 2-finite mixture of bivariate Poisson regression with
covariates in the mixing proportion is the best model for describing the data set. This model
has a number of interesting features: first, it allows for overdispersion; second, it embraces zero-
inflated regressions models as a special case; third, it allows for an elegant interpretation based
on the typical clustering usage of finite mixture models; and, finally, it can also be used to fit
negative correlations.

The problem of overdispersion arises because of the presence of unobserved heterogeneity in
many real data sets. In insurance data sets, an insurance company cannot keep track of the
many differences between policyholders. However, the model proposed in this paper accounts
for unobserved heterogeneity by choosing a finite number of subpopulations. We assume the
existence of two types of policyholder described separately according to each component in the
mixture.

The phenomenon of excess of zeros may also be seen as a consequence of this unobserved

16



heterogeneity. The model proposed here, as a finite mixture of bivariate Poisson regression
model, embraces the zero-inflated bivariate Poisson regression model as a special case. The
main difference with zero-inflated models is that the two-component mixture model reported here
allows mixing with respect to both zeros and positives. This interpretation is more flexible and
holds better in our application. The group separation is characterized by low mean (policyholders
considered as a “good” drivers) and high mean (policyholders considered as a “bad” drivers).

Moreover, as it seems that the data set may have been generated from two distinct sub-
populations, the model allows for a net interpretation of each cluster separately. Note that
different regression coefficients can be used to account for the “observed” heterogeneity within
each population.

Finally, we would like to mention various ways in which this paper might be extended.
Although in the present paper we limit our analysis to the bivariate case, it could be extended to
include larger dimensions. Following the general model presented by Karlis and Meligkotsidou
[2007], covariates might be added and this finite mixture of multivariate Poisson regressions
could be used to cluster high-dimensional data. A particularly interesting case occurs if we
consider there to be no dependence within a cluster, whereby within-cluster independent Poisson
regressions are considered.

To conclude this section, we should point out that the one of the limitations of the bivariate
Poisson model is that it allows only for positive dependence within each component, owing to the
properties of the bivariate (multivariate) Poisson distribution. To overcome this shortcoming,
other bivariate models, such as the copula-based models defined in Nikoloulopoulos and Karlis
[2010], might be considered as the component specific bivariate distributions.
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A Zero inflation in mixed bivariate Poisson distributions

Lemma: Mixed bivariate Poisson distributions always give equal or greater probability to the
(0,0) cell from the corresponding bivariate Poisson with the same marginal means.

Proof: It is straightforward to see that any mixed bivariate Poisson distribution has an excess
of zeros compared to the bivariate Poisson distribution with the same marginal means. This
result generalizes the known property in one dimension (Shaked’s Two Crossings Theorem).
To demonstrate this, consider for sake of simplicity the 2-finite bivariate Poisson mixture, with
probability p and (1 − p) to the points (λ11, λ21, λ31) and (λ12, λ22, λ32). The marginal means
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are p(λ11+λ31)+ (1− p)(λ12+λ32) and p(λ21+λ31)+ (1− p)(λ22+λ32) respectively. Consider
also the bivariate Poisson with the same marginal means. Under the 2-finite mixture case the
(0, 0) probability is given by

P2(0, 0) = p exp (−(λ11 + λ21 + λ31)) + (1− p) exp (−(λ12 + λ22 + λ32))

or
P2(0, 0) = p exp(−Λ1) + (1− p) exp(−Λ2)

while for the bivariate Poisson we have

PBP (0, 0) = exp (−(pΛ1) + (1− p)Λ2)

By considering the random variable Q that takes value −Λ1 and −Λ2 with probabilities p
and 1− p and considering the Jensen’s inequality we have that

E(exp(Q)) ≥ exp(E(Q))

and thus
P2(0, 0) ≥ PBP (0, 0).

Thus, this mixing of this kind also results in zero inflation. The above result can be readily
generalized to an infinite number of components as well as to more than two dimensions.

B Some of the moments for the 2-finite mixture of bivariate
Poisson distribution

It can readily be obtained that

E(Yk) =

m∑
j=1

pj(λkj + λ3j)

E(Y 2
k ) =

m∑
j=1

pj
[
λkj + λ3j + (λkj + λ3j)

2
]

V ar(Yk) = E(Y 2
k )− [E(Yk)]

2

E(Y1Y2) =
m∑
j=1

pj [λ3j + (λ1j + λ3j)(λ2j + λ3j)]

Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2)

For actuarial purposes one may well be interested in quantities suc as E(Y1 + Y2) and/or
V ar(Y1+Y2) (see, e.g. Bermúdez [2009]). These can be easily obtained from the above formulas.
Note, that for this sum, we can show that it is a finite mixture of Hermite distributions.
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